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Abstract—Conventional digital cameras typically accumulate all
the photons within an exposure period to form a snapshot image.
It requires the scene to be quite still during the imaging time,
otherwise it would result in blurry image for the moving objects. Re-
cently, a retina-inspired spike camera has been proposed and shown
great potential for recording high-speed motion scenes. Instead of
capturing the visual scene by a single snapshot, the spike camera
records the dynamic light intensity variation continuously. Each
pixel on spike camera sensor accumulates the incoming photons
independently and persistently, which fires a spike and restarts
the photon accumulation immediately once the dispatch threshold
is reached, producing a continuous stream of spikes recorded at
very high temporal resolution. To recover the dynamic scene from
captured spike stream, this paper presents an image reconstruction
approach for spike camera. In order to generate high-quality re-
construction, we investigate the temporal correlation along motion
trajectories and exploit it via adaptive temporal filtering. In par-
ticular, we present a hierarchical motion-aligned temporal filtering
scheme, combining short-term filtering with long-term filtering to
take advantage of long-term temporal correlation with low model
complexity. Experimental results demonstrate that the proposed
scheme outperforms the existing schemes significantly, producing
much better objective and subjective qualities for spike camera
image reconstruction.

Index Terms—High-speed motion, image reconstruction, motion
alignment, neuromorphic camera, spike camera, temporal
correlation.

I. INTRODUCTION

A. Motivation

Conventional digital cameras use an exposure window to
accumulate all the incoming photons within that period to form
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a snapshot image. Such imaging mechanism can produce clear
images with fine details for still scenes. However, for dynamic
scenes with high speed motion, a single point on a moving
object may be projected to different pixels on the image sen-
sor, resulting in blurry image. To capture the motion process
of dynamic scenes, frame-based high-speed cameras adopt a
very short exposure time. With extremely reduced exposure, the
moving distance of an object point projected on the image sensor
becomes extremely short so that the captured image becomes
less blurry. However, the reduced amount of incoming photons
also leads to lower signal-to-noise ratio (SNR) in the formed
images. With the recent prevalence of emerging computer vision
applications such as autonomous driving and unmanned aerial
vehicle, there is an increasing demand for high-speed motion
scene imaging [1]. This makes the limitations of conventional
cameras more evident.

To address the challenges in high-motion imaging, some
biologic-inspired event cameras have been proposed [2]–[13],
including DVS [3], ATIS [4], DAVIS [5] and CeleX [6]–[8],
etc. Instead of recording the visual information by conventional
image frames, event cameras monitor the light and send out
events asynchronously to describe the light intensity changes.
These events are recorded at very high temporal accuracy, e.g.
on the order of micro-seconds or even nanoseconds [14], [15].
Such cameras are good at capturing high-speed motion and
particularly suitable for motion detection and moving object
tracking. However, they also have certain limitations. Probably
the most critical one is that they can hardly reconstruct texture
details of the visual scene.

Recently, a novel retina-inspired spike camera [16]–[19] has
been proposed for capturing dynamic scenes with high temporal
resolution. The spike camera no longer adopts the concept of
image frames. Instead, each pixel on the spike camera sensor
continuously accumulates the incoming light and fires a spike
when a certain amount of photons is arrived. Different from
the conventional cameras that use the same period for photon
accumulation at every pixel, each pixel of spike camera works
independently and fires a stream of spikes asynchronously, as
shown in Fig. 1(a). The continuous spike stream provides a
flexible representation to record the dynamic variation process
of light intensity. In addition, different from the event cameras
that only record relative light intensity changes, spike camera
provides a more explicit format for recovering the absolute light
intensity of the visual scenes.
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Fig. 1. Image reconstruction for spike camera. Here is an example of high-
speed motion scene, where a car drives at a speed of 100 km/h. (a) The
asynchronous spikes generated by spike camera. A black point represents a
spike at a specific space-time location. (b) The reconstructed visual scene by
our method.

B. Scope of the Paper

This paper aims to study the image reconstruction problem
for spike cameras, as illustrated in Fig. 1. In order to recover
the texture details from captured spike data, we may infer the
instantaneous light intensity at any moment according to the
inter-spike intervals (i.e. how long it takes the sensor pixel
to accumulate the pre-specified amount of photons). This can
provide a preliminary visual recovery. However, due to the
existence of thermal noise and the Poisson effect of photon
arrival, results of such simple light inference usually appear to
be noisy, unstable, and spatio-temporally incoherent. Intuitively,
in order to suppress the perturbation caused by noise, photon
accumulation in a longer period should be considered, just as
conventional cameras do using the exposure window. At the
same time, special attention should be paid to object motion to
avoid the mixing of lights from different object points, otherwise
it will blur the image details.

In this paper, we propose an image reconstruction method
for spike camera. In particular, we aim to handle the challenges
brought by the conflict between high-speed motion and photon
accumulation. For this purpose, we exploit the temporal cor-
relation along motion trajectories. Considering that the variety
in scene content leads to diversity in temporal correlation, we
employ an adaptive temporal auto-regressive (TAR) model to
formulate the temporal correlation. In order to generate low-
noise reconstruction, it is preferred to exploit the signal along
a long motion trajectory. However, as the motion trajectory
becomes longer, more parameters are involved and the model
would become complicated and unstable. To address the issue,
we propose a motion-aligned hierarchical temporal filtering
scheme, combining short-term filtering (STF) with long-term
filtering (LTF). To be specific, we firstly employ STF to ex-
ploit local temporal correlation, and then establish a long-term
temporal auto-regressive model based on the results of STF, so
that long-term temporal correlation can be exploited with lower
model complexity.

C. Related Works

1) Event Camera: In 1991, Mahowald et al. [2] published
a moving cat on the cover of Scientific American, marking the
birth of the first silicon retina. This pioneering work proves that
a chip based on the neural architecture of eye can be a more
powerful way to do computation, officially ignited the emerging

field of neuromorphic vision sensors. Delbruck et al. [3] devel-
oped Dynamic Vision Sensor (DVS) to represent light intensity
change with asynchronous sparse events. To recover light in-
tensity, Posh et al. [4] proposed an Asynchronous Time-based
Image Sensor (ATIS), which introduces the event-triggered light
intensity measurement circuit to reconstruct the pixel at the
changing pixel. Delbruck’s et al. [5] developed the Dynamic
and Active Pixel Vision Sensor (DAVIS) to make up for DVS
texture imaging defect and was extended to color DAVIS346 [9].
Chen et al. [7], [8] increased the bit width of event to restore the
scene texture. Different from these event cameras that focus on
the variation of light intensity, the spike camera fires a positive
signal to represent the arriving of a certain amount of photons,
providing a more explicit input format to reconstruct the texture
of the outer scenes.

2) Single-Photon Camera: Over the past decades, many ef-
forts have been made to develop alternative sensors with photon-
counting ability [20], [21], [24], [26]–[33]. Quanta Image Sensor
(QIS) and Single-Photon Avalanche Diodes (SPAD) are two
mainstream technologies. These emerging sensors are sensi-
tive to single photoelectron, where the presence or absence of
electron results in a logical binary output of “0” or “1” upon
readout. Benefiting from the single-photon sensitivity, single
photon cameras have shown potential for the applications under
low illumination [34], [35]. Table I compares the SPAD, QIS
and the spike camera [25].

Some image reconstruction algorithms have been proposed
for SPAD and QIS cameras. Gyongy et al. [36] proposed to
compensate for motion and spatially re-assign the photon detec-
tions to reconstruct the high-speed moving objects with minimal
motion artifacts. Ma et al. [37] presented a quanta burst photog-
raphy framework which can efficiently align and merge binary
sequences into intensity images with minimal motion blur, high
signal-to-noise ratio, and high dynamic range. Chi et al. [35]
developed a student-teacher framework to handle noise and
motion simultaneously. Seets et al. [38] and Iwabuchi et al. [39]
proposed deblurring methods for single-photon imaging to sup-
press the motion blur and achieved competitive performance in
dynamic scenes.

3) Image and Video Denoising: The problem we aim to solve
in this paper is the estimation of a reliable visual signal from a
stream of sensed light-intensity data perturbed by Possion effect
and noise. Therefore it is highly related to image and video
denoising. In the past decades, many methods have been pro-
posed for image denoising and achieved great success [40]–[50].
Many works among them, such as BM3D [40], WNNM [41]
and BAS [42], etc., consider that image signals can be sparsely
represented in properly selected or learned domain. Many recent
works, such as [44]–[47], [50]–[53], use deep neural networks
(DNN) to learn the characteristics of images and noises so that
the noises can be separated from the image signals. Besides,
some burst denoising methods [49], [50], [54]–[57] merge a
sequence of underexposed noisy images into a single clean
image, so as to exploit the temporal correlation to handle the
challenges brought by low light and motion.

4) Spike Camera Imaging: Spike camera is a retina-inspired
neuromorphic camera proposed recently [16]–[19]. A few
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TABLE I
COMPARISON WITH SPADS AND QISS

texture reconstruction algorithms have been proposed for spike
camera in recent years [18], [58]. The “texture from inter-spike
interval” (TFI) [18] method infers the instantaneous light in-
tensity according to inter-spike intervals. The “texture from
playback” (TFP) method considers the number of spikes in a
longer time window. The former one is usually quite noisy
while the latter one is usually blurry when fast motion exists,
so that a trade-off between motion blur and signal-to-noise ratio
would become the problem. The TVS [58] method exploits a
retina-like visual image reconstruction framework to improve
the reconstruction quality. However, visually annoying noise and
artifacts can still be observed in the reconstructed images.

The remainder of this paper is organized as follows. Section II
gives an overview of the spike camera and the spike generation
process. Section III discusses the preliminary light intensity
inference. Section IV presents a motion-aligned image recon-
struction framework for spike camera. Section V describes the
proposed motion-aligned hierarchical temporal filtering method.
Sections VI and VII report the experimental settings and results,
respectively. Section VIII discusses the limitations and future
works. Section IX concludes the paper.

II. OVERVIEW OF SPIKE CAMERA

A. Idea of Spike Camera

Different from the conventional digital cameras that use a
certain exposure time window to accumulate all the photoelectric
information within that interval and compact them into a single
snapshot image, the spike camera [16]–[18] abandons the con-
cept of exposure window. Instead, it monitors the incoming light
and fires a continuous stream of spikes to record the dynamic
light intensity variation process, as illustrated in Fig. 2. The
firing of each spike stands for the arrival of a very small number
photons. The spike stream is recorded at a very high temporal
resolution so that the dynamic light intensity variation process
may be recovered from the spike data accurately.

B. Spike Generation

The mechanism of spike camera sensor is illustrated in Fig. 2.
The sensor is composed of an array of pixels, each of which
records the light intensity independently. Each pixel consists
of three major components: photoreceptor, integrator, and com-
parator. The photoreceptor captures the incident light from the
scenes and converts the instantaneous light intensity I(t) into a
voltage that can be recognized by the integrator. The integrator
accumulates the electric charges from photoreceptor continu-
ously, while the comparator checks the accumulated signal

A(t) =

∫ t

0

ηI(x)dx (1)

Fig. 2. The operation principle of spike camera. Each pixel on the sensor
accumulates incoming photons persistently, and fires a stream of spikes to
record the dynamic variation of light intensity. The sensor is illustrated by the
blue column, and the spikes are illustrated by the short vertical lines along the
horizontal time arrow.

persistently. The constant η here denotes the photoelectric con-
version rate. Once the accumulated signal reaches a dispatch
threshold θ, the pixel sets up a flag signal for firing a spike (we
call it spike flag). This signal is also sent to reset the integrator,
immediately restarting a new “integrate-and-fire-spike” cycle.
With such “compare-and-reset” operation, the signal accumu-
lated by the integrator can be formulated as

A(t) =

∫ t

0

ηI(x)dx mod θ. (2)

Ideally, the aforementioned flag signal indicates the firing of a
spike that should be immediately transmitted to all the following
circuits. In actual hardware implementation, the spike is repre-
sented by a binary bit that will be read out under the control of
a clock signal.

Fig. 3 illustrates the electric charge accumulation process and
the generation of spike stream, with respect to a light intensity
signal shown in Fig. 3(a). We can see that the time points in
Fig. 3(b) where the signalA(t) resets to zero are exactly the firing
time of generated spikes. These points divide the working period
into a set of intervals, in each of which the signal I(t) integrates
to a constant (i.e. θ/η), corresponding to the amount of photons
represented by a spike. In current design, the θ is controlled
by a reference voltage, which can be adjusted to accommodate
different luminance conditions.

C. Spike Cycle and Inter-Spike Interval

Since each pixel works independently, we can restrict our dis-
cussion to a single pixel at this moment. Suppose {t1, t2, t3, · · · }
are the firing time of the generated spikes, it is straightforward
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Fig. 3. The process of spike generation for one pixel. (a) Top: the incoming
light intensity I(t). It is worth mentioning that in practice the sensor can not
observe the actual intensity directly. Instead, it receives a stream of incoming
photons that follow a Poisson process. (b) Middle: the accumulated electric
chargesA(t)with reset whenA(t) reaches the dispatch threshold θ. (c) Bottom:
the spike arrayS(n) read out by the camera. Each stick here stands for one spike.
Note that the reading is synchronized by a clock signal – a spike is read out as
“‘1” and no-spike is read out as “0”.

that the firing time of the k-th spike (i.e., tk) satisfies∫ tk

tk−1

ηI(x)dx = θ. (3)

Clearly, the photon accumulation for the k-th spike starts at tk−1

and ends at tk. We call this period as the “life cycle” of the k-th
spike, or the “inter-spike interval”. We can observe from Fig. 3
how the firing frequency of spikes varies with the instantaneous
light intensity. When the incoming light is strong, it produces a
dense spike stream with short inter-spike intervals. When the
light becomes weak, it produces a sparse spike stream with
longer inter-spike intervals.

D. Read Out of Spikes

A pixel on spike image sensor may fire spikes at arbitrary time,
but the camera can only read out the spikes as a discrete-time
binary signal S(n). To be more specific, the camera checks the
spike flag periodically, at the time t = nT , n = 1, 2, . . ., with
a fixed interval T . If the spike flag has been set up at the time
t = nT , it reads out S(n) = 1 and clears the flag for this pixel
immediately for the coming of next spike; otherwise, it reads
out S(n) = 0. Apparently, the k-th spike fired at the time tk will
be read out as S(nk) = 1 with

nk = �tk/T �. (4)

Therefore, the index n ofS(n) is a discrete approximation of the
continuous time t. To keep the time information of each spike
as accurate as possible, the readout interval T should be small
enough.1

E. Spike Data Format

The camera uses a high speed polling to periodically check
the status of every pixel. To be more specific, in the current

1The interval T is 25 μs in the current spike camera.

implementation, the camera checks 40000 times per second.
Each time when it checks, it reads out the spike flag (“0” or “1”)
of every pixel and forms a H ×W spike frame.2 This binary
frame is compressed by a simple method and sent out via a high
speed data interface. As the time lapses, the camera produces
a three-dimensional H ×W ×N spike cubic S(x, y, n) – an
array of spike frames, as illustrated in Fig. 1(a). For the conve-
nience of later discussions, we use Sn(z) instead to represent
the spike frame array, where n is the time index and z = (x, y)
denotes the pixel coordinate.

III. LIGHT INTENSITY INFERENCE FOR SPIKE CAMERA

The purpose of spike camera is to record the dynamic light-
intensity variation for high-speed motion scenes. Once the spike
frame array is captured, we aim to recover the instantaneous
intensity at any time, denoted by In(z).

A. Interval-Based Inference

A natural way to derive the light intensity is to consider the
“life cycle” of each spike. A constant amount of electric charges
is accumulated during this period. Therefore, we can infer the
light intensity from the inter-spike intervals.

To be concrete, let us consider a specific pixel z and an
arbitrary time indexn. The start and end time index of the current
spike cycle that covers the point (z, n) can be calculated by

P (z, n) = max {k | Sk(z) = 1, k < n} , (5)

N(z, n) = min {k | Sk(z) = 1, k � n} . (6)

Since a single spike cycle typically lasts an extremely short time,
we can safely assume that the light intensity remains constant
within this period. According to the spike generation model in
(3), we have

ηIn(z) · [N(z, n)− P (z, n)] · T + εn(z) ≈ θ (7)

Here we introduced a small random perturbation εk(z) to ac-
count for the noise caused by dark current or the Poisson effect
of incoming light. We use “≈” in (7) because the discrete time
index nk is only an approximation of the actual firing time tk, as
formulated in (4). Based on (7), the instantaneous light intensity
can be estimated as3

În(z) =
θ

ηT [N(z, n)− P (z, n)]
(8)

B. The Challenges

The above interval-based method essentially produces a visual
reconstruction of the scene based on the instantaneous light
intensity. Fig. 4(a) illustrates the image reconstructed according
to (8). We can see the produced image appears to be quite
noisy. This is because the instantaneous light intensity is actually
difficult to measure accurately. Indeed, even under a constant
luminance, the number of incoming photons in a very short inter-
val is a random variable, which is typically Poisson distributed.
Another factor that may contribute to the noisy reconstruction is

2The resolution in current implementation is 400× 250.
3This method is called “texture-from-interval” (TFI) in [18].
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Fig. 4. Reconstruction images for the test scene High-Speed Car, created by
interval based light intensity inference methods. (a) Left: the interval-based
reconstruction based on single spike life cycle. (b) Right: the reconstruction
based on multiple spike life cycles (with m = 5).

the inaccurate evaluation of the spike interval, due to the discrete
approximation of tk.

To suppress the effect of noise, an intuitive way is to jointly
consider the photons received in multiple spike cycles. In this
way, the estimation becomes

În(z) =
(2m− 1) · θ

ηT
[
N (m)(z, n)− P (m)(z, n)

] , (9)

with

P (m)(z, n) = max

{
k |

n−1∑
i=k

Si(z) = m, k < n

}
, (10)

N (m)(z, n) = min

{
k |

k∑
i=n

Si(z) = m, k � n

}
. (11)

Here 2 m is the number of spikes andN (m)(z, n)− P (m)(z, n)
is the total length of these 2m− 1 spike cycles. Fig. 4(b)
illustrates an example of reconstructed image using (9), with
m = 5. Indeed, by averaging the photons within multiple spike
cycles, the influence of perturbation εk(z) can be remarkably
suppressed for static scenes, producing much better recovery.
However, for dynamic scene with high-speed motion, the move-
ment of objects leads to undesired motion blur as shown in
Fig. 4(b). As a conclusion, it is no longer appropriate to simply
average the photons in the direction of temporal axis, when the
objects move fast.

IV. SPIKE CAMERA IMAGE RECONSTRUCTION WITH MOTION

ALIGNMENT

As we discussed, imaging for high-motion scene is very chal-
lenging. Photon accumulation is required to reduce the influence
of sensor noise, but the existence of high-speed motion leads
to the mixing of light from different object points. To address
this challenges, we propose the idea of light-intensity inference
with motion alignment. More specifically, we propose a mo-
tion aligned temporal filtering scheme to exploit the temporal
correlation of light along motion trajectories.

A. Overall Framework

We aim to restore the true light intensity I at any moment from
the recorded spike data S, with the best quality we may achieve.
Considering the motion of objects, it would be beneficial to
exploit the temporal correlation along motion trajectories, so that

high-quality reconstruction can be achieved without incurring
motion blur. To this end, we propose a motion-aligned recon-
struction framework, as illustrated in Fig. 5. Suppose Ik is the
key frame to reconstruct. We first infer the instantaneous light
intensity at different moments via (8), producing a sequence
of preliminary estimation În, n = 1, 2, . . .. Then, we perform
motion estimation based on these preliminary estimated recon-
struction image, producing the displacement fields {uk→k+i}
between the key frame and a set of neighboring frames. Finally,
based on the displacement fields, motion-aligned temporal fil-
tering is performed to regularize the preliminary estimations,
generating the ultimate high-quality reconstruction image Īk.

B. Motion Estimation

In order to exploit the temporal correlation to reduce the
influence of noise without incurring motion blur, we need to find
out the motion trajectories that go through each current pixel we
aim to reconstruct, so that the pixels on the key frame Îk can
be mapped to reference frames {Îk+i}, i = ±1,±2, . . . in the
neighborhood. This problem can be solved via many optical flow
algorithms [59]–[65]. In this paper, we followed the most widely
used classical optical flow estimation strategy. To be specific,
we assume that the light intensity along motion trajectories is
consistent and the motion is spatially smooth, leading to the
following optimization function

min
uk→k+i

|∇uk→k+i|22 + η
∣∣∣Îk+i (z + uk→k+i(z))− Îk(z)

∣∣∣2
2

(12)
Here η weighs between the light consistency term and the
smoothness regularization term. Solving this optimization prob-
lem with Euler-Lagrange equations, we get the displacement
field uk→k+i that maps the pixels in Ik to the pixels in Ik+i.

C. Motion-Aligned Temporal Filtering

It is worth noting that employing a fixed filter for the whole
image cannot utilize the temporal correlation efficiently. On the
one hand, due to the variety of scene content, the temporal corre-
lations along motion trajectories may vary remarkably from one
pixel location to another. On the other hand, due to the existence
of object occlusion or illumination changes, the assumption of
temporal consistency of light intensity along motion trajectories
can be non-reliable in some cases. When outliers appear on the
motion trajectories, they need be treated differently.

To handle the temporal correlation along motion trajecto-
ries adaptively, we propose to utilize an auto-regressive (AR)
model [66], which has shown great potential for many image
processing problems [67]–[72].

1) Temporal Auto-Regressive (TAR) Model: To characterize
the temporal correlation among spike array, the light intensity
can be modeled as an auto-regressive process along motion
trajectories, as illustrated by Fig. 6. This can be formulated by

Ik(z) =
∑
i∈φ

αiIk+i (z + uk→k+i(z)) + ε. (13)

Here φ is a template of time-index offset, representing the
temporal dependency structure of the auto-regression model.
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Fig. 5. The framework of motion-aligned image reconstruction for spike camera.

Fig. 6. Motion-aligned temporal auto-regressive model. The light intensity
of key pixels (represented by blue signs) can be inferred according to the
corresponding supporting pixels (represented by the grey signs) along the same
motion trajectories. The model parameters are adaptively determined by the
local temporal structures.

A typical choice for φ is {±1,±2, . . . ,±K}. And {αi} is a set
of parameters for the TAR model to control the weighting in the
linear combination (13). The term ε is a perturbation independent
of the spatial-temporal location, and it accounts for both the fine
details of image signal and random noise.

The validity of the TAR model hinges on a mechanism that
adaptively adjusts the model parameters αi to reflect the local
temporal correlation structure of the visual signal. The assump-
tion that motion and light intensity changes are locally smooth
suggests piecewise stationarity. In other words, the parameters
αi remain nearly constant in a small locality, although they may
vary significantly for different region. Such piecewise station-
arity makes it possible to learn the signal structure by fitting the
light intensity samples within a local window to the TAR model.
Based on the learned structure, we can exploit the temporal
correlation to generate reconstruction images with better quality.

2) Spatially-Adaptive Temporal Filtering: Suppose Ik is the
image that we aim to reconstruct and z is an arbitrary pixel. With
the displacement fields {uk→k+i}, i = ±1,±2, . . ., we filter the
preliminarily estimated luminance along motion trajectory using
the learned TAR model, producing a more stable reconstruction

Īk(z) =
∑
i∈φ

αiÎk+i (z + uk→k+i(z)) . (14)

It is worth noting that uk→k+i(z) in (14) can be sub-pixel
displacement. To fetch the light intensity at sub-pixel location

Îk+i(z + uk→k+i(z)), interpolation methods such as bicubic
interpolation [73], or the more sophisticated content adaptive
methods such as NEDI [74] and SAI [68], can be used.

Based on the assumption of piecewise stationarity, the param-
eters α of TAR model for pixel location z in Ik can be adapted
to the signal local structure by solving the following least-square
optimization problem:

argmin
α

∑
z′∈Ωz

⎛⎝Ik(z
′)−

∑
i∈φ

αiIk+i (z
′+uk→k+i(z

′))

⎞⎠2.

(15)
Of course, the true signal Ik is not available and we use Îk
instead to solve (15). HereΩz is a two-dimensional local window
around the pixel z. In general, the size of Ωz , i.e., the number
of neighboring pixels the window contains, is set to be much
bigger than the length of φ so that the above problem can be
reliably solved and avoid over-fitting.

D. Limitation

In order to fully exploit the temporal correlation to improve
reconstruction quality, a long-term TAR model combining the
signal along a long motion trajectory, should be employed.
This aspect is particularly important for the case of our high-
speed spike camera since its sampling rate is up to 40000 Hz.
However, with the increase in the size of φ, the complexity
of TAR model increases accordingly, introducing a large set
of parameters {αi}. As discussed in Section IV-C, to obtain a
reliable estimation of {αi}, the window Ω should be increased
accordingly. However, the validity of TAR model relies on the
piecewise stationarity that the temporal correlation structure
within local spatial window are near constant. If the size of Ω
becomes too large, the stationarity assumption no longer holds
and it will affect the accuracy of TAR model.

V. MOTION-ALIGNED HIERARCHICAL TEMPORAL FILTERING

To address the difficulty of TAR model learning for long mo-
tion trajectories, we propose a hierarchical temporal AR model.
Based on this, we develop a Motion-Aligned Hierarchical
Temporal Filtering (MAHTF) scheme, as shown in Fig. 7. It
adopts a hierarchical filtering as illustrated in Fig. 8, which
first utilizes a short-term filtering (STF) and then a long-term
filtering (LTF) with reduced model degree of freedom. In this
way, the long-term temporal correlation can be exploited without
over-fitting.
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Fig. 7. The proposed Motion-Aligned Hierarchical Temporal Filtering (MAHTF) framework for spike camera image reconstruction.

Fig. 8. Hierarchical temporal filtering along motion trajectories. Short-term
filtering (STF) is first employed to exploit local temporal correlation to stabilize
the initial estimation. Then, a long-term filtering (LTF) is applied to the sub-
sampled results, so that long-term temporal correlation can be exploited with
lower model complexity.

A. Overview

The overall framework is illustrated in Fig. 7. To achieve high
reconstruction quality, we recover the visual scene via three
stages in a coarse-to-fine manner. Suppose Ik is the frame that
we aim to reconstruct. Firstly, an initial estimation of {Ik+i},
denoted by {Îk+i}, i = 0,±1,±2, . . ., is inferred by (8). Then,
the motion between Îk and Îk+i is estimated, resulting in the
displacement fields uk→k+i, i = ±1,±2, . . .. Assuming that a
visual scene generally do not change much in very short time, a
motion-aligned STF with a fixed filter is performed on {Îk±i}, so
as to exploit the short-term temporal correlation and reduce the
degree of freedom of the subsequent long-term TAR model. The
STF produces a sequence of finer estimations {Ĩk±i}. Finally, to
further refine the reconstruction, motion estimation is performed
to refine the displacement fields, and a motion-aligned LTF
is conducted on {Ĩk±i} using a hierarchical long-term TAR
model. The TAR model adaptively adjust the model parameters
according to the local content structure. In particular, since the
short-term correlation has already been exploited by STF, we
establish the long-term TAR model based on temporal sub-
sampling. This design helps to reduce the complexity of TAR
model, but it does not affect the utilization of long-term temporal
correlation.

B. Short-Term Filtering

We use short-term filtering to exploit the short-time corre-
lation and reduce the freedom of TAR model for long-term

correlation. In this paper, a short term is defined as a very
short time, e.g. a few spike polling points (0.1∼0.2 ms). In
general, the natural image signal typically exhibits very strong
temporal correlation in short term along motion trajectories, and
the correlation structure tends to be the same, a fixed filter can be
utilized for STF, resulting in an estimation of Ik(z) formulated
by

Ĩk(z) =
1

C

rs∑
i=−rs

ωi · Îk+i (z + uk→k+i(z)) . (16)

Here, rs is the radius of short-term filtering and C =
∑

ωi is
normalization factor. Under a widely used Markov model, the
strength of temporal correlation in visual signal decays with the
temporal distance. Therefore, we adopt a relatively simple filter
for STF, in which the filter weight is formulated by

ωi = e−
i2

2σ2 . (17)

Here, σ is determined by the radius parameter rs.

C. Long-Term Filtering

We employ a long-term filtering based on {Ĩn} to take advan-
tage of temporal correlation in a long time. In order to exploit
the correlation adaptively, we establish a TAR model along the
motion trajectories. Specifically, since short-term correlation is
already exploited via STF, we establish the TAR model with
temporal subsampling, as shown in Fig. 8. The model produces
a final estimation of Ik(z) from several estimated frames with
fixed frame intervals:

Īk(z) =

rl∑
i=−rl

αi · Ĩk+i·T̄
(
z + uk→k+i·T̄ (z)

)
. (18)

Here, rl represents the radius of TAR model and {αi} is a set
of filter weights, which can be adjusted adaptively according to
the signal structures. T̄ denotes the sampling interval for LTF,
which is typically no larger than the length of STF, so that the
correlation along the whole motion trajectories can be exploited.

Compared with the original TAR model formulated by (14),
the freedom of the above TAR model is remarkably reduced
with the aid of STF, so that the parameters of long-term TAR
model can be adapted to its correlation structure. In addition, to
avoid overfitting, we add a regularization term to constrain the
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TABLE II
DETAIL INFORMATION OF REAL CAPTURED SPIKE DATA

parameters. Therefore, the filter weights is calculated by:

argmin
α

η‖α‖22+

∑
z′∈Ωz

(
Ĩk(z

′)−
rl∑

i=−rl

αiĨk+i·T̄
(
z′ + uk→k+i·T̄ (z

′)
))

2, (19)

Here Ωz is a spatial local window around pixel z.

D. Discussion of Complexity

To speed up the algorithm, we use STF as a pre-processing
and the complexity of the pre-processing is O(n). Then, the
major computational complexity is on motion alignment and
the parameter estimation of LTF filtering weights {αi}. The
complexity of motion alignment is proportional to the number
of frames 2rl used in LTF. The complexity of filtering weight
calculation is related to both the window size and the degree
of spatial overlap. Since LTF determines the filtering wights of
one block at a time by solving (19), the larger the block and the
smaller the overlap, the faster the algorithm runs. However, a
large block size may reduce the adaptability of the TAR model.
Thus, there needs a trade-off between algorithm complexity and
model accuracy. Suppose each image is divided to m blocks,
the time complexity to reconstruct n images is O(n×m+ n×
2rl).

VI. EXPERIMENT SETTINGS

A. Implementation

We evaluate the performance of the proposed method on both
synthesized data and real captured data. For synthesized data ex-
periments, we develop a spike camera simulator to simulate the
working mechanism of spike camera (as illustrated in Section II),
so that we can generate spikes from some virtual scenes. The
simulator outputs both the synthesized spike sequences and the
corresponding ground truth image at each sampling time point.
In this way, we can evaluate the reconstruction performance
with objective image quality metrics, such as Peak Signal-to-
Noise Ratio (PSNR) and Structural SIMilarity (SSIM). For real
data experiments, we not only use the PKU-Spike-High-Speed
dataset4 but also capture additional spike streams using the PKU
FSM spike camera system as shown in Fig. 9. The detail of the
sequences is shown in Table II.

4A dataset real captured with spike camera, which is publicly available at [On-
line]. Available: https://www.pkuml.org/resources/pku-spike-high-speed.html.

Fig. 9. The PKU FSM spike camera system, which consists of a spike-based
image sensor and a microprocessor.

In this paper, the temporal window of MAHTF is set to 40,
in which the radius of the STF is set to 6 and the interval of
long-term TAR model is set to 8. The size of two-dimensional
local window is set to 25× 25.

B. Spike Data Synthesis

In order to evaluate the reconstruction method objectively, we
develop a spike camera simulator to generate synthesized spike
sequences from image based virtual scene.

To be specific, we regard each selected image as the scene
to record and suppose that there is a relative motion between
the scene and the spike camera sensor, which results in that the
sensor captures different region of the scene at different moment.
To simulate the spike camera working mechanism, each pixel of
the sensor accumulates the light intensity (i.e., the pixel value of
image) continuously, while the sensor checks the accumulated
value of all the pixels periodically, producing a sequence of
H ×W spike frames. To be more specific, for then-th polling, if
the accumulated value at the coordinate z reaches the predefined
threshold, it outputs Sn(z) = 1 and clears the value of pixel z.
Otherwise, it outputsSn(z) = 0. At the time of each polling, we
also extract the image region that the sensor currently monitors,
producing a sequence of H ×W ground truth.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
method and compare it with the existing previous schemes. We
also conduct some ablation studies to analyze the factors that
influence the performance of spike camera image reconstruction.
Supplementary material is available at IEEE DataPort [75] to
demonstrate the spike data and reconstruction results.

A. Comparison With Previous Methods

We compare our method with the existing spike camera
reconstruction methods, i.e. “Texture from inter-spike interval
(TFI)”[18], “Texture from playback (TFP)”[18] and “Texture via
Spiking Neural Model (TVS)”[58] objectively and subjectively.
Here both the temporal window of TFP and the search window
of TFI are set to 40.
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Fig. 10. Comparison of different reconstruction methods on real captured spike data. (Please enlarge the figure to observe details.) The proposed MAHTF
achieves the best visual quality.

1) Visual Quality Evaluation: Figs. 10 and 11 show the im-
ages reconstructed from real spike data and synthesized spike
data, respectively. We note that the visual quality performance of
our proposed method clearly outperforms other reconstruction
methods. For the TFI method, it can recover the outline of
fast moving objects well, but the signal-to-noise ratio (SNR) is
generally unsatisfactory. For example, the reconstructed image
intensity fluctuates drastically with time on many pixels. This
severely influences the perceptual quality. The TFP method, on
the other hand, leads to apparent undesired motion blur on the
reconstructions, especially for the regions with fast motion. The
TVS method achieves better visual quality than TFI and TFP,
but noticeable noise remain on the reconstruction, especially
for the bright regions with short spike intervals. In contrast,
our proposed method achieves better reconstruction that is more
temporally stable, and it restores clear textures with fine details,
even for the regions with high speed motion.

2) Objective Quality Evaluation: Tables III and IV show
the average PSNR and SSIM results on the synthesized spike
sequences, respectively. We note that the proposed MAHTF
reconstruction method significantly outperforms the previous
spike camera reconstruction methods. We believe the reason is

TABLE III
THE PSNR RESULTS OF DIFFERENT METHODS (UNIT: DB)

that the proposed method achieves long-term photon accumu-
lation for the novel camera model via motion-aligned tempo-
ral filtering, which can effectively handle the conflict between
high-speed motion and light intensity stabilization. Such motion
alignment has not been consider in all the previous image
reconstruction methods for spike camera.
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Fig. 11. Comparison of different reconstruction methods on synthesized spike data. (Please enlarge the figure to observe details.) The proposed MAHTF achieves
the best visual quality.

B. Comparison With Denoising Methods

We compare the proposed method with several alternative
schemes combining existing spike camera image reconstruc-
tion algorithms with denoising. For denoising algorithms, we
consider WNNM [41], DnCNN [47] and FastDVDnet [52]. For
existing spike camera reconstruction methods, we use TFP [18],
TFI [18] and TVS [58].

Table V presents the PSNR and SSIM results of the compared
schemes. We note that the proposed MAHTF scheme achieves
the best performance among them. Fig. 12 shows the visual qual-
ity of reconstruction image. We can observe that the proposed
MAHTF outperforms other pipelined reconstruction methods.
For TFP-based methods, the added denoising post-processing
can not remove the blur effect. For TFI-based and TVS-based
methods, the denoising operation is helpful, but it cannot provide

a quality comparable to MAHTF. It removes part of image noise
but also degrade some of the texture details. The reason may be
that these denoising algorithms have not taken the characteristics
of spike camera data into consideration.

C. Comparison With Conventional Camera

We set up a hybrid camera system to compare the proposed
method with conventional camera. As shown in Fig. 13(a),
the hybrid camera system is composed of a conventional cam-
era and a spike camera. The conventional camera adopts the
auto-exposure mode. Fig. 13 shows the visual comparison for
a high-speed motion scene. We note that the image captured
by a conventional camera at 120 fps is blurry. The reason is
that conventional cameras accumulate all the photons within
a exposure window to form a snapshot, ignoring the object
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Fig. 12. Comparison with denoising methods on the “falling doll”.

Fig. 13. Visual comparison with a conventional camera for a high-speed motion scene, where the leg is moving very fast. Our MAHTF can reconstruct the
high-speed moving scene without motion blur.

TABLE IV
THE SSIM RESULTS OF DIFFERENT METHODS

motion in that interval. The spike camera produce a continuous
spike streams to record the high-speed dynamic scene at a much
higher temporal resolution. By properly modeling the motion
and temporal correlation, we can reconstruct a clear image (as
shown in Fig. 13(c)) for each time point.

D. Comparison With Single-Photon Camera Imaging Method

To evaluate the performance of our proposed framework on
reconstructing high-speed moving scenes, we compare the pro-
posed framework with the representative single-photon imaging
methods, i.e., [37] and [35]. For [37], the temporal window of
each block is set to 40. For [35], we use the code and pretrained
model, which are publicly available at https://github.itap.purdue.
edu/StanleyChanGroup/ECCV2020_Dynamic. Fig. 14 shows
the reconstruction results. We note that the proposed method
achieves the best performance on spike camera reconstruction.
In fact, the working mechanism difference between single-
photon cameras and the spike camera results in the difference of
output data meaning, such that single-photon imaging methods
are not well-matching for spike camera imaging.

E. Visualization of Intermediate Results

In order to better evaluate the proposed scheme, we visualize
the intermediate results in Fig. 15, including the preliminary
reconstruction, the finer reconstruction, the preliminary motion
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TABLE V
COMPARISON WITH DENOISING METHODS

Fig. 14. Comparison with the competitive single-photon image sensor reconstruction methods.

Fig. 15. Visualization of intermediate results. The quality is improved progressively.
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Fig. 16. Improvement of hierarchical temporal filtering. We compare the proposed MAHTF with motion-aligned short-term filtering (with a window radius
of 6) and motion-aligned long-term filtering (with a window radius of 40).

field and the refined motion field. We note that the quality of
reconstruction is improved progressively. As for motion estima-
tion, we note that the refined motion field estimated based on
finer reconstruction can describe the movement of objects more
accurately than the preliminary motion field.

F. Ablation Study for Hierarchical Temporal Filtering

We look into the the benefit of hierarchical temporal filtering.
We compare the proposed MAHTF method with two alterna-
tive methods: (1) motion-aligned short-term filtering (MASTF),
(2) motion-aligned long-term filtering (MALTF). The MALTF
method here uses the same strategy for choosing {αi} as
MASTF. We also compare them with the basic light inference
method without any temporal filtering, i.e. TFI. Fig. 16 shows the
PSNR and SSIM results. We can observe that long term filtering
generally achieves better performance than short-term filtering,
which confirms the necessity of utilizing long-term temporal
correlation for spike camera image reconstruction. Moreover,
we note that MAHTF outperforms MALTF, confirming that
the hierarchical filtering structure plays an important role in
improving the reconstruction quality.

VIII. DISCUSSION AND LIMITATION

A. Super-Resolution

As described above, spike camera uses a high-speed
“integrate-and-fire-spike” mechanism to record the visual scenes
at extremely high temporal resolution. In fact, the high-speed
spiking mechanism also enables the spike camera to capture
finer texture details beyond the pixel resolution of sensor itself.
Due to the relative motion between the camera and the objects,
the sensor may sample different points of an objects at differ-
ent moments. By properly exploiting the motion information,
an higher-resolution reconstruction with finer details may be
recovered. We will explore this aspect in our future works.

B. Limitations

The proposed framework assumes that the motion can be well
solved by optical flow algorithms, which is usually appropriate
for camera motion and rigid object motion. When there exists
complex motion and the assumption does not well hold, the

auto-regressive model can mitigate the mismatch by adaptively
exploiting the temporal correlation. However, when the scene
contains several small objects or undergoes nonrigid motion,
the reconstruction may suffer in undesired artifacts. In addi-
tion, the effectiveness of our proposed method is also based
on the assumption of the brightness constancy along motion
trajectories during a short-term interval (about 0.1∼1 ms). For
the scenes where the light intensity along motion trajectories
changes at very high frequency (e.g. 10 k Hz or higher), the
motion-aligned temporal filtering is inferior. Despite of this, the
proposed method can still handle most of the high-speed scenes.

IX. CONCLUSION

The recently-invented spike camera has demonstrated its great
potential for recording high-speed motion scenes. This paper ad-
dresses the image reconstruction problem for spike camera and
proposes an effective scheme to reconstruct high-quality images
from the captured three-dimensional spike data array. Taking the
object movement into consideration, we employ motion-aligned
filtering to exploit the temporal correlation along motion trajec-
tories. This allows us to exploit the photo-electronic information
in a relatively large time window, without mixing the light from
different object points, so that high quality reconstruction can
be achieved. In particular, we propose a hierarchical temporal
filtering structure, combining short-term filtering with long-term
temporal auto-regressive model to take advantage of long-term
correlation with reduced model complexity. Experiments on
both real captured spike data and synthesized spike data demon-
strate that the proposed scheme achieves significantly improved
reconstruction performance for spike camera.
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